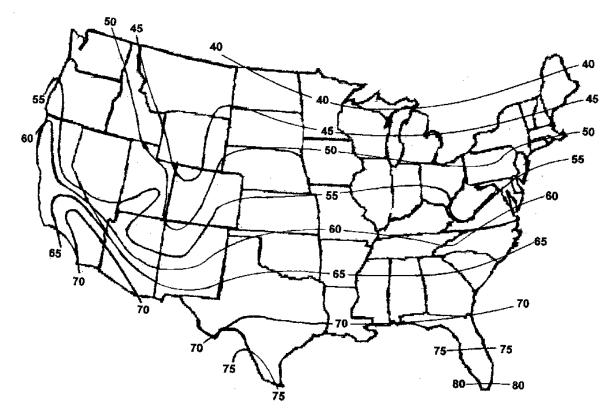


This worksheet applies to systems using a DX air handler or cased coil to supply cooling in a climate where the <u>cooling load of the structure dominates</u>.

Determine heating and cooling requirements of the structure, based on ACCA Manual J (latest edition) procedure using the 99.6% heating design temperature and the 0.4% cooling design temperature from the <u>EarthLinked[®] System Sizing and Performance Tables</u>. Elite RHVAC or Wrightsoft Right-J software is recommended.


If domestic water heating by Heat Recovery Module (HRM) is part of the system, add 1,000 BTUH for each adult and child to the Design Heating Load.

If domestic water heating by Domestic Water Module (DWM) is part of the system, add 1,000 BTUH for each adult and child to the Design Heating and Cooling Loads.

	Summer Design Temp:		°F	Total Cooling Load:	 BTUH
	Winter Design Temp:		°F	Sensible Cooling Load:	 BTUH
				Design Heating Load:	 BTUH
,	Determine lead earth tem	an aratura fra	m Tom	noroturo Mon	

2. Determine local earth temperature from Temperature Map:

Site Location: _____ Earth Temp.: _____ °F city state/prov.

3. Locate the System Performance Data for Air Cooling based on the following parameters:						:		
	Local Earth	h Temperat	ure:	°F (6	enter tempe	erature from m	nap)	
	• Earth Loop	o Configurat	ion:			ised upon ava	ailable land area ne site)	
4.	Cooling Outp	ut Capacity	<u>Y</u>					
	outputs from the above. The interest DESIGN Sense respectively.	the appropr itial selecti sible coolin Enter infor	I be determined be interested in the determined by interested	erforn size (c 5% of	nance Table capacity) sl the total a	e selected bas h <mark>ould have D</mark>	sed on steps 2 a DESIGN Total a cooling loads,	and 3 nd
	System		DESIGN Cooling	•	,		Cooling Load	
		Tons	Total:		BTUH	Total:		BTUH
		;	Sensible:		BTUH	Sensible:		BTUH
	Is Total Cooli	ng Output	greater than Tota	l Cool	ing Load?	☐ YES	□NO	
	Is Sensible C	ooling Out	put greater than \$	Sensik	ole Cooling	Load?	YES NO	
		ng Module ^v	units that provide when (1)required ccur:					
	 Ambient outdoor temperatures have exceeded the outdoor summer design temperature conditions for at least 7 hours of continuous system run time, coupled with the conditions described in the next sentence. 							
 Low thermal conductivity soils do not effectively absorb and dissipate heat. Examples of sucl soils are light dry soil, dry sand, peat and organic soils, dry clay soils and hardpan. 					s of such			
	The following table provides the appropriate Hybrid Cooling Module size for the compressor unit selected, based on the foregoing system sizing process.						sor unit	
	Γ				Hybrid	Cooling Mod	ule Model	

No Cooling capacity or efficiency adjustments are necessary for the addition of the Hybrid Cooling Module (HCM) to the system.

R-410A

HCM-1836C

HCM-4272C

Compressor Unit Size

-018 thru -036

-042 thru -072

NOTE: If air handler or cased coil are more than 40 feet higher than the compressor unit, call ETI Technical Support before specifying.

5.	From the appropriate performance table and the system selected for cooling, determine the DESIGN heating capacity for the system. This heating capacity must be equal to or greater than the heating load.						
	System Size	Design Heating (100% Load)	Heating Load				
	Tons	BTUH		втин			
	Check to see that the hea	ting output is at least 10	0% of the Heating Load				
Is the DESIGN Heating at least 100% of the Heating Load? ☐ YES ☐ NO							
	Supplemental heat (electric strip heat) of at least 20% of the heating load is required.						
6.	Final system size is as fol	lows:					
	System Size:	Tons					
	Compressor Unit Model:						
	Air Handler/Cased Coil M	odel:		-			
	Supplemental Electric He	at:		KW			
	Earth Loop Model:						
	Domestic Water Module I	Model:					
	Heat Recovery Module M	odel:					

7. Balance Point Temperature

The balance point temperature for a heating system must be determined **if an outdoor thermostat is installed to initiate supplemental heat.** The outdoor thermostat set point is adjusted to be the balance point temperature.

For EarthLinked[®] R-410A systems two values must be known to determine balance point temperature:

- Heating output capacity @ design point (100% Load), determined in 5.
- Heating output capacity @ 5% Load, determined by the procedure that follows.

Heating output capacity @ 5% Load is the MAXIMUM heating capacity taken from the performance table for the specific system selected.

With the above information and the building heating load determined by the Manual J method, access the Earthlinked Technologies website at www.earthlinked.com to access the **Balance Point** Calculator.

Under the heading "Dealer Info", scroll down and click on "Dealers Login only".

Go to "Dealer Resource Center" and scroll down to "Forms and Policies".

Click on "Balance Point Calculator" and you will see the following:

BALANCE POINT CALCULATOR (Applies only to Heating—do not use for Cooling)
enter data
BUILDING LOAD AT DESIGN TEMP IN BTUH =
OUTDOOR DESIGN TEMP =
EQUIPMENT CAPACITY @ 5% LOAD VALUE =
EQUIPMENT CAPACITY @ 100% LOAD=
results
BALANCE POINT CAPACITY =
BALANCE POINT TEMPERATURE = 70°F INDOOR DESIGN (fixed)

Under "ENTER DATA", input the values for <u>Building Design Heating Load</u> (from 1.); <u>Outdoor Winter Design Temperature</u> (from 1.); <u>Heating Output (Equipment) Capacity @ 5%</u> Load (from 7.above); and <u>Heating Output (Equipment) Capacity@ Design (100% Load)</u> (from 5.).

The resulting balance point capacity and temperature can be read under "RESULTS".

Balance Point Capacity =	BTUH
Balance Point Temperature =	°F